论文标题

复杂多体系统动力学的进化稀疏数据驱动的发现

Evolutionary sparse data-driven discovery of complex multibody system dynamics

论文作者

Askari, Ehsan, Crevecoeur, Guillaume

论文摘要

多体系统未知参数的值对于预测,监测和控制至关重要,有时会使用基于物理的模型估算,从而导致不正确的结果。从时间序列数据中发现多体系统的运动方程式是具有挑战性的,因为它们由复杂的理性函数,常数作为函数参数和多样化的函数术语组成,而这些函数术语并不容易猜测。这项研究旨在开发一种进化符号稀疏回归方法,以识别多体系统的系统。该过程发现运动和系统参数方程式在函数参数中显示为常数值或功能表达式系数。遗传编程算法被编写以生成符号函数表达式,其中嵌入了硬质阈值回归方法。以进化方式,确定了复杂的功能形式,恒定参数和未知系数,以最终发现给定系统的管理方程。提出了一项适应性度量,以促进蒸馏方程中的简约,并减少适合数据误差。还研究了混合离散性动力系统,建议一种方法来确定模式数和系统子模型。在模拟环境中评估了建议的进化符号稀疏回归方法的性能和效率。还通过研究多个多体系统来证明开发方法的能力。该过程是有效的,并有可能估算系统参数并提炼各自的管理方程式。该技术降低了功能词典不涵盖揭示隐藏物理定律所需的所有功能以及需要先验了解感兴趣机理所需的所有功能。

The value of unknown parameters of multibody systems is crucial for prediction, monitoring, and control, sometimes estimated using a biased physics-based model leading to incorrect outcomes. Discovering motion equations of multibody systems from time-series data is challenging as they consist of complex rational functions, constants as function arguments, and diverse function terms, which are not trivial to guess. This study aims at developing an evolutionary symbolic sparse regression approach for the system identification of multibody systems. The procedure discovers equations of motion and system parameters appearing as either constant values in function arguments or coefficients of function expressions. A genetic programming algorithm is written to generate symbolic function expressions, in which a hard-thresholding regression method is embedded. In an evolutionary manner, the complex functional forms, constant arguments, and unknown coefficients are identified to eventually discover the governing equation of a given system. A fitness measure is presented to promote parsimony in distilled equations and reduction in fit-to-data error. Hybrid discrete-continuous dynamical systems are also investigated, for which an approach is suggested to determine both mode number and system submodels. The performance and efficiency of the suggested evolutionary symbolic sparse regression methodology are evaluated in a simulation environment. The capability of the developed approach is also demonstrated by studying several multibody systems. The procedure is efficient and gives the possibility to estimate system parameters and distill respective governing equations. This technique reduces the risk that the function dictionary does not cover all functionality required to unravel hidden physical laws and the need for prior knowledge of the mechanism of interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源