论文标题
$ 2 $ - 距离距离定期弱的可构造性
$2$-Reconstructibility of Weakly Distance-Regular Graphs
论文作者
论文摘要
图形是$ \ ell $ - 实现的,如果它是由通过删除$ \ ell $顶点获得的诱导子图的多音量确定的。我们证明,具有至少六个顶点的强烈规则图是$ 2 $可构造的。
A graph is $\ell$-reconstructible if it is determined by its multiset of induced subgraphs obtained by deleting $\ell$ vertices. We prove that strongly regular graphs with at least six vertices are $2$-reconstructible.