论文标题
Q#用于量子算术函数的量子查找表的实现
A Q# Implementation of a Quantum Lookup Table for Quantum Arithmetic Functions
论文作者
论文摘要
在本文中,我们介绍了基于查找表(LUTS)的基于门的量子计算机的任意单变量的固定点算术操作的Q#实现。通常,这是实现函数的一种效率低下的方式,因为输入的数量可能很大甚至是无限的。但是,如果输入域可以界限,并且输出可能会有某些错误公差(在实际用例中通常都是这种情况),则某些量子算术函数的量子LUT实现比其相应的可逆算术实现更有效。我们使用Q \#及其近似错误讨论LUT的实现。然后,我们展示了如何使用LUT来实现量子算术功能的示例,并将实现所需的资源与某些常用的算术函数的当前最新定制实现进行了比较。 LUT的实现旨在在实施端到端量子算法时使用从业者使用。此外,鉴于其定义明确的近似误差,LUT实现为评估定制量子算术电路效率的明确基准。
In this paper, we present Q# implementations for arbitrary single-variabled fixed-point arithmetic operations for a gate-based quantum computer based on lookup tables (LUTs). In general, this is an inefficent way of implementing a function since the number of inputs can be large or even infinite. However, if the input domain can be bounded and there can be some error tolerance in the output (both of which are often the case in practical use-cases), the quantum LUT implementation of certain quantum arithmetic functions can be more efficient than their corresponding reversible arithmetic implementations. We discuss the implementation of the LUT using Q\# and its approximation errors. We then show examples of how to use the LUT to implement quantum arithmetic functions and compare the resources required for the implementation with the current state-of-the-art bespoke implementations of some commonly used arithmetic functions. The implementation of the LUT is designed for use by practitioners to use when implementing end-to-end quantum algorithms. In addition, given its well-defined approximation errors, the LUT implementation makes for a clear benchmark for evaluating the efficiency of bespoke quantum arithmetic circuits .