论文标题
单层fESE/gdclo异质结构中,旋转依赖性的高阶拓扑绝缘子和两种不同的角模式
Spin-Dependent High-Order Topological Insulator and Two Types of Distinct Corner Modes in Monolayer FeSe/GdClO Heterostructure
论文作者
论文摘要
我们建议可以在单层FESE/GDCLO异质结构中实现自旋依赖性的二阶拓扑绝缘子,其中底物GDCLO有助于在FESE中稳定和增强抗铁磁顺序。二阶拓扑绝缘子没有自旋轨道耦合和平面磁场。我们还发现,存在两种类型的不同角落模式,分别存在于两个铁磁边缘和两个抗铁磁边缘的交叉点。铁磁角模式的基础物理学遵循Sublattice-Chirality-Kink图片。更有趣的是,铁磁角模式显示了旋转依赖性特性,这也是稳健的旋转轨道耦合。出乎意料的是,可以将抗铁磁角模式视为来自一系列铁磁角模式的典型新兴和分层现象。值得注意的是,抗铁磁角模式违反了一般的纠结图片,可以理解为在连接的电位井中的一维施罗宾格方程的绑定状态。我们的发现不仅在电子材料中提供了有希望的二阶拓扑绝缘子,而且在高阶拓扑绝缘子中发现了角落模式的一些新特性。
We propose that a spin-dependent second-order topological insulator can be realized in monolayer FeSe/GdClO heterostructure, in which substrate GdClO helps to stabilize and enhance the antiferromagnetic order in FeSe. The second-order topological insulator is free from spin-orbit coupling and in-plane magnetic field. We also find that there exist two types of distinct corner modes residing in intersections of two ferromagnetic edges and two antiferromagnetic edges, respectively. The underlying physics for ferromagnetic corner mode follows a sublattice-chirality-kink picture. More interestingly, ferromagnetic corner mode shows spin-dependent property, which is also robust against spin-orbit coupling. Unexpectedly, antiferromagnetic corner mode can be taken as a typical emergent and hierarchical phenomenon from an array of ferromagnetic corner modes. Remarkably, antiferromagnetic corner modes violate general kink picture and can be understood as bound states of a one-dimensional Schrodinger equation under a connected potential well. Our findings not only provide a promising second-order topological insulator in electronic materials, but uncover some new properties of corner modes in high-order topological insulator.