论文标题

向蛋白质的二级结构开放淀粉样蛋白:淀粉样蛋白基因在β片内增加十倍

Opening Amyloid-Windows to the Secondary Structure of Proteins: The Amyloidogenecity Increases Tenfold Inside Beta-Sheets

论文作者

Takacs, Kristof, Varga, Balint, Farkas, Viktor, Perczel, Andras, Grolmusz, Vince

论文摘要

通常,人工智能(AI)的方法,尤其是机器学习,一直在众多科学领域征服新领土。这些技术的大多数应用仅限于大型数据集的分类,但是很少会从这些工具中推断出新的科学知识。在这里,我们表明,在筛选所有蛋白质数据库 - 沉积的同源性过滤蛋白结构时,基于AI的淀粉样蛋白基因预测指标可以强烈区分$β$呈片的边界和内部六聚体。我们的主要结果表明,预计$β$纸的内部六聚体中有超过30%的内部六聚体被预测为淀粉样蛋白生成,而仅在边界区域以外,只有3 \%被预测。该结果可能阐明了蛋白质的一般保护机制,可避免变成淀粉样蛋白:如果$β$ - 表的边界是淀粉样蛋白的,那么整个$β$板就可以更容易地变成不溶性的淀粉样蛋白结构,以定期重复重复的平行$β$ -Sheets来表征。我们还表明,在研究蛋白质结构的$α$ helices或随机选择的子序列的边界上不存在类似现象。

Methods from artificial intelligence (AI), in general, and machine learning, in particular, have kept conquering new territories in numerous areas of science. Most of the applications of these techniques are restricted to the classification of large data sets, but new scientific knowledge can seldom be inferred from these tools. Here we show that an AI-based amyloidogenecity predictor can strongly differentiate the border- and the internal hexamers of $β$-pleated sheets when screening all the Protein Data Bank-deposited homology-filtered protein structures. Our main result shows that more than 30\% of internal hexamers of $β$ sheets are predicted to be amyloidogenic, while just outside the border regions, only 3\% are predicted as such. This result may elucidate a general protection mechanism of proteins against turning into amyloids: if the borders of $β$-sheets were amyloidogenic, then the whole $β$ sheet could turn more easily into an insoluble amyloid-structure, characterized by periodically repeated parallel $β$-sheets. We also present that no analogous phenomenon exists on the borders of $α$-helices or randomly chosen subsequences of the studied protein structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源