论文标题
Cauchy的完整性,宽松的表达和有效下降,用于分裂纤维
Cauchy Completeness, Lax Epimorphisms and Effective Descent for Split Fibrations
论文作者
论文摘要
对于任何合适的基本类别$ \ MATHCAL {V} $,我们发现$ \ Mathcal {V} $ - 忠实的Lax Epimorlisms中的$ \ Mathcal {V} $ - $ \ Mathsf {cat} $当然是这些$ \ Mathcal {V} $ f \ f \ colon \ colon \ colOn \ alson \ Mathcal {b} $其诱导的$ \ Mathcal {v} $ functors $ \ Mathsf {Cauchy} f \ colon \ Mathsf {Cauchy} \ Mathcal {a} \ to \ to \ to \ mathsf {cauchy} \ Mathcal {cauchy} \ Mathcal {b}对于情况,$ \ MATHCAL {V} = \ MATHSF {set} $,这相当于要求诱导的函数$ \ Mathsf {cat} \ left(F,\ Mathsf {Cat} \ right)在拆分(OP)纤维类别之间均等。 By reducing the study of effective descent functors with respect to the indexed category of split (op)fibrations $\mathcal{F}$ to the study of the codescent factorization, we find that these observations on fully faithful lax epimorphisms provide us with a characterization of (effective) $\mathcal{F}$-descent morphisms in the category of small categories $ \ MATHCAL {CAT} $;也就是说,我们发现它们与Sobral先前研究的离散操作纤维的索引类别相对于(有效的)下降形态。我们包括有关贝克 - 切瓦利条件和未来工作的一些评论。
For any suitable base category $\mathcal{V} $, we find that $\mathcal{V} $-fully faithful lax epimorphisms in $\mathcal{V} $-$\mathsf{Cat} $ are precisely those $\mathcal{V}$-functors $F \colon \mathcal{A} \to \mathcal{B}$ whose induced $\mathcal{V} $-functors $\mathsf{Cauchy} F \colon \mathsf{Cauchy} \mathcal{A} \to \mathsf{Cauchy} \mathcal{B} $ between the Cauchy completions are equivalences. For the case $\mathcal{V} = \mathsf{Set} $, this is equivalent to requiring that the induced functor $\mathsf{CAT} \left( F,\mathsf{Cat}\right) $ between the categories of split (op)fibrations is an equivalence. By reducing the study of effective descent functors with respect to the indexed category of split (op)fibrations $\mathcal{F}$ to the study of the codescent factorization, we find that these observations on fully faithful lax epimorphisms provide us with a characterization of (effective) $\mathcal{F}$-descent morphisms in the category of small categories $\mathcal{Cat}$; namely, we find that they are precisely the (effective) descent morphisms with respect to the indexed categories of discrete opfibrations -- previously studied by Sobral. We include some comments on the Beck-Chevalley condition and future work.