论文标题

交换环的矿石延伸和二摩根

Ore extensions of commutative rings and the Dixmier-Moeglin equivalence

论文作者

Bell, Jason P., Burkhardt, Léon, Priebe, Nicholas

论文摘要

我们考虑表格$ t的矿石扩展:= r [x;σ,δ] $,$ r $一个可交换的积分域,该域是有限地生成在字段$ k $上的。我们表明,如果$ t $的gelfand-kirillov尺寸小于四个,那么{\ rm spec}(t)$ in {\ rm spec}(t)$的主要理想$ p \是原始的。我们还表明,有一些示例,这些等价并非全部适用于整数Gelfand-Kirillov尺寸,大于或等于$ 4 $。

We consider Ore extensions of the form $T:=R[x;σ,δ]$ with $R$ a commutative integral domain that is finitely generated over a field $k$. We show that if $T$ has Gelfand-Kirillov dimension less than four then a prime ideal $P\in {\rm Spec}(T)$ is primitive if and only if $\{P\}$ is locally closed in ${\rm Spec}(T)$, if and only if the Goldie ring of quotients of $T/P$ has centre that is an algebraic extension of $k$. We also show that there are examples for which these equivalences do not all hold for $T$ of integer Gelfand-Kirillov dimension greater than or equal to $4$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源