论文标题

纠缠和消极的哈密顿人在半线上无数迪拉克场

Entanglement and negativity Hamiltonians for the massless Dirac field on the half line

论文作者

Rottoli, Federico, Murciano, Sara, Tonni, Erik, Calabrese, Pasquale

论文摘要

我们研究了半线上无质量的迪拉克费米恩的几个不相交间隔的地面纠缠哈密顿量。它的结构由局部部分和一个本地术语组成,每个术语将每个点耦合到彼此之间的另一个点。双本地算子可以是对角线的,也可以是在费米的手势中混合的,并且对边界条件很敏感。这种纠缠哈密顿量的知识是评估否定性哈密顿量的起点,即部分转移的降低密度矩阵的对数,这是混合状态下子系统纠缠的操作表征。我们发现,哈密顿的消极情绪继承了相应的纠缠哈密顿式的结构。我们最终展示了这两个操作员的连续表达式如何从自由屈服链中的精确数值计算中恢复。

We study the ground-state entanglement Hamiltonian of several disjoint intervals for the massless Dirac fermion on the half-line. Its structure consists of a local part and a bi-local term that couples each point to another one in each other interval. The bi-local operator can be either diagonal or mixed in the fermionic chiralities and it is sensitive to the boundary conditions. The knowledge of such entanglement Hamiltonian is the starting point to evaluate the negativity Hamiltonian, i.e. the logarithm of the partially transposed reduced density matrix, which is an operatorial characterisation of entanglement of subsystems in a mixed states. We find that the negativity Hamiltonian inherits the structure of the corresponding entanglement Hamiltonian. We finally show how the continuum expressions for both these operators can be recovered from exact numerical computations in free-fermion chains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源