论文标题
离散组的中心作为暗物质的稳定器
The centers of discrete groups as stabilizers of Dark Matter
论文作者
论文摘要
稳定暗物质(DM)的最常见选择是$ z_2 $对称性。不过,总的来说,与$ n \ ge 2 $的任何$ z_n $都可以稳定DM。我们考虑$ z_n $是模型的内部对称组$ g $的子组;我们很容易成为$ g $的中心,但$ g $的可能性不在$ z_n \ times g^\ prime $的形式,其中$ g^\ prime $是一个比$ g $较小的集团(即低订单)。我们检查了所有小于2001年的离散级别组的所有离散组,我们发现其中许多不能写入环状群和其他一些组的直接产物,但是它们具有一个非平凡的中心,可以用于模型构建以稳定DM。
The most usual option to stabilize Dark Matter (DM) is a $Z_2$ symmetry. In general, though, DM may be stabilized by any $Z_N$ with $N \ge 2$. We consider the way $Z_N$ is a subgroup of the internal-symmetry group $G$ of a model; we entertain the possibility that $Z_N$ is the center of $G$, yet $G$ is not of the form $Z_N \times G^\prime$, where $G^\prime$ is a group smaller (i.e. of lower order) than $G$. We examine all the discrete groups of order smaller than 2001 and we find that many of them cannot be written as the direct product of a cyclic group and some other group, yet they have a non-trivial center that might be used in Model Building to stabilize DM.