论文标题

智能反射表面辅助多源VR流的速率分解

Rate-Splitting for Intelligent Reflecting Surface-Aided Multiuser VR Streaming

论文作者

Huang, Rui, Wong, Vincent W. S., Schober, Robert

论文摘要

对虚拟现实(VR)应用程序的需求不断增长,需要无线系统提供高传输速率,以同时为多个用户支持360度视频流。在本文中,我们提出了一个智能反射表面(IRS)辅助速率分解(RS)VR流流系统。在拟议的系统中,RS促进了用户在VR流中的共同利益的开发,IRS创建了其他传播渠道,以支持高分辨率360度视频的传输。 IRS还增强了由于所有RS用户必须能够解码常见消息所致的要求而减轻性能瓶颈的能力。我们制定了一个优化问题,以最大化360度视频的可实现的比特率,但受到用户的服务质量(QoS)约束。我们提出了一个深层确定性的政策梯度(深grail)算法,其中我们利用深度强化学习(DRL)和配方问题的隐藏凸度,以优化IRS相位偏移,RS参数,光束成形的矢量和360度视频瓷砖的次要选择。我们还提出了Ravnet,这是一个深层神经网络,该网络在我们的深grail算法中为政策学习定制。基于现实世界VR流数据集的性能评估表明,提议的IRS AID RS VR流媒体系统在系统总和率,360度视频和在线执行运行时的比特率方面优于几个基线方案。我们的结果还揭示了从RS和IRS获得的各自的性能提高,以改善Multiuser VR流媒体系统中的QoS。

The growing demand for virtual reality (VR) applications requires wireless systems to provide a high transmission rate to support 360-degree video streaming to multiple users simultaneously. In this paper, we propose an intelligent reflecting surface (IRS)-aided rate-splitting (RS) VR streaming system. In the proposed system, RS facilitates the exploitation of the shared interests of the users in VR streaming, and IRS creates additional propagation channels to support the transmission of high-resolution 360-degree videos. IRS also enhances the capability to mitigate the performance bottleneck caused by the requirement that all RS users have to be able to decode the common message. We formulate an optimization problem for maximization of the achievable bitrate of the 360-degree video subject to the quality-of-service (QoS) constraints of the users. We propose a deep deterministic policy gradient with imitation learning (Deep-GRAIL) algorithm, in which we leverage deep reinforcement learning (DRL) and the hidden convexity of the formulated problem to optimize the IRS phase shifts, RS parameters, beamforming vectors, and bitrate selection of the 360-degree video tiles. We also propose RavNet, which is a deep neural network customized for the policy learning in our Deep-GRAIL algorithm. Performance evaluation based on a real-world VR streaming dataset shows that the proposed IRS-aided RS VR streaming system outperforms several baseline schemes in terms of system sum-rate, achievable bitrate of the 360-degree videos, and online execution runtime. Our results also reveal the respective performance gains obtained from RS and IRS for improving the QoS in multiuser VR streaming systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源