论文标题
使用光弹簧超过标准量子极限
Surpassing the Standard Quantum Limit using an Optical Spring
论文作者
论文摘要
量子力学将噪声限制和对物理测量的灵敏度限制。不需要的背相位和光学测量精度之间的平衡在干涉系统上施加了标准量子限制(SQL)。为了实现SQL以下的敏感性,有必要利用逃避测量技术的反作用,或利用检测器中任何多余的噪声贡献的取消。 %的许多原理实验证明已经进行了,但直到最近才有一个在SQL以下的敏感性。在这项工作中,我们扩展了初始演示,并实现sub-SQL测量灵敏度几乎是以前的测量值几乎两倍,并且适用于干涉重力波检测器的结构。实际上,该技术直接适用于高级ligo,它可以观察到相似的信号回收腔。通过利用光弹簧创建的量子相关性,我们测量了SQL以下的总灵敏度,$ \ textbf {2.8} $ db,对应于噪声功率降低$ \ textbf {72} \ pm \ pm \ pm \ pm \ textbf {5.1} $ \%以下。通过使用失调的光弹簧,这种降噪可调,使我们可以选择落在SQL以下的所需频率范围。该结果表明,在适用于Ligo的频率范围内,远低于SQL的敏感性,并有可能将重力波检测器的到达范围进一步扩展到宇宙中。
Quantum mechanics places noise limits and sensitivity restrictions on physical measurements. The balance between unwanted backaction and the precision of optical measurements impose a standard quantum limit (SQL) on interferometric systems. In order to realize a sensitivity below the SQL, it is necessary to leverage a back-action evading measurement technique, or else exploit cancellations of any excess noise contributions at the detector. %Many proof of principle experiments have been performed, but only recently has an experiment achieved sensitivity below the SQL. In this work, we extend that initial demonstration and realize sub-SQL measurement sensitivity nearly two times better than previous measurements, and with architecture applicable to interferometric gravitational wave detectors. In fact, this technique is directly applicable to Advanced LIGO, which could observe similar effects with a detuned signal recycling cavity. By exploiting quantum correlations created by an optical spring, we measure a total sensitivity below the SQL by $\textbf{2.8}$ dB, corresponding to a reduction in the noise power by $\textbf{72}\pm\textbf{5.1}$ \% below the quantum limit. Through the use of a detuned optical spring, this noise reduction is tunable, allowing us to choose the desired range of frequencies that fall below the SQL. This result demonstrates access to sensitivities well below the SQL at frequencies ranges applicable to LIGO, with the potential to extend the reach of gravitational wave detectors further into the universe.