论文标题

部分可观测时空混沌系统的无模型预测

Continual Vision-based Reinforcement Learning with Group Symmetries

论文作者

Liu, Shiqi, Xu, Mengdi, Huang, Piede, Liu, Yongkang, Oguchi, Kentaro, Zhao, Ding

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Continual reinforcement learning aims to sequentially learn a variety of tasks, retaining the ability to perform previously encountered tasks while simultaneously developing new policies for novel tasks. However, current continual RL approaches overlook the fact that certain tasks are identical under basic group operations like rotations or translations, especially with visual inputs. They may unnecessarily learn and maintain a new policy for each similar task, leading to poor sample efficiency and weak generalization capability. To address this, we introduce a unique Continual Vision-based Reinforcement Learning method that recognizes Group Symmetries, called COVERS, cultivating a policy for each group of equivalent tasks rather than individual tasks. COVERS employs a proximal policy optimization-based RL algorithm with an equivariant feature extractor and a novel task grouping mechanism that relies on the extracted invariant features. We evaluate COVERS on sequences of table-top manipulation tasks that incorporate image observations and robot proprioceptive information in both simulations and on real robot platforms. Our results show that COVERS accurately assigns tasks to their respective groups and significantly outperforms existing methods in terms of generalization capability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源