论文标题

部分可观测时空混沌系统的无模型预测

A Benchmark Study of Contrastive Learning for Arabic Social Meaning

论文作者

Khondaker, Md Tawkat Islam, Nagoudi, El Moatez Billah, Elmadany, AbdelRahim, Abdul-Mageed, Muhammad, Lakshmanan, Laks V. S.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Contrastive learning (CL) brought significant progress to various NLP tasks. Despite this progress, CL has not been applied to Arabic NLP to date. Nor is it clear how much benefits it could bring to particular classes of tasks such as those involved in Arabic social meaning (e.g., sentiment analysis, dialect identification, hate speech detection). In this work, we present a comprehensive benchmark study of state-of-the-art supervised CL methods on a wide array of Arabic social meaning tasks. Through extensive empirical analyses, we show that CL methods outperform vanilla finetuning on most tasks we consider. We also show that CL can be data efficient and quantify this efficiency. Overall, our work allows us to demonstrate the promise of CL methods, including in low-resource settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源