论文标题

部分可观测时空混沌系统的无模型预测

Some inequalities on weighted Sobolev spaces, distance weights and the Assouad dimension

论文作者

López-García, Fernando, Ojea, Ignacio

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We study certain inequalities and a related result on weighted Sobolev spaces on bounded John domains in $\mathbb{R}^n$. Namely, we prove the existence of a right inverse for the divergence operator, along with the corresponding a priori estimate, the improved and the fractional Poincaré inequalities, the Korn inequality and the local Fefferman-Stein inequality. All these results are obtained on weighted Sobolev spaces, where the weight is a power of the distance to the boundary. In all cases the exponent of the weight $d(\cdot,\partialΩ)^{βp}$ is only required to satisfy the restriction: $βp>-(n-\dim_A(\partialΩ))$, where $p$ is the exponent of the Sobolev space and $\dim_A(\partialΩ)$ is the Assouad dimension of the boundary of the domain. According to our best knowledge, this condition is less restrictive than the ones in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源