论文标题
部分可观测时空混沌系统的无模型预测
Anomalous dissipation and spontaneous stochasticity in deterministic surface quasi-geostrophic flow
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Surface quasi geostrophy (SQG) describes the two-dimensional active transport of a temperature field in a strongly stratified and rotating environment. Besides its relevance to geophysics, SQG bears formal resemblance with various flows of interest for turbulence studies, from passive scalar and Burgers to incompressible fluids in two and three dimensions. This analogy is here substantiated by considering the turbulent SQG regime emerging from deterministic and smooth initial data prescribed by the superposition of a few Fourier modes. While still unsettled in the inviscid case, the initial value problem is known to be mathematically well-posed when regularised by a small viscosity. In practice, numerics reveal that in the presence of viscosity, a turbulent regime appears in finite time, which features three of the distinctive anomalies usually observed in three-dimensional developed turbulence: (i) dissipative anomaly, (ii) multifractal scaling, and (iii) super-diffusive separation of fluid particles, both backward and forward in time. These three anomalies point towards three spontaneously broken symmetries in the vanishing viscosity limit: scale invariance, time reversal and uniqueness of the Lagrangian flow, a fascinating phenomenon that Krzysztof Gawedzki dubbed spontaneous stochasticity. In the light of Gawedzki's work on the passive scalar problem, we argue that spontaneous stochasticity and irreversibility are intertwined in SQG, and provide numerical evidence for this connection. Our numerics, though, reveal that the deterministic SQG setting only features a tempered version of spontaneous stochasticity, characterised in particular by non-universal statistics.