论文标题
部分可观测时空混沌系统的无模型预测
Diversity-Promoting Ensemble for Medical Image Segmentation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Medical image segmentation is an actively studied task in medical imaging, where the precision of the annotations is of utter importance towards accurate diagnosis and treatment. In recent years, the task has been approached with various deep learning systems, among the most popular models being U-Net. In this work, we propose a novel strategy to generate ensembles of different architectures for medical image segmentation, by leveraging the diversity (decorrelation) of the models forming the ensemble. More specifically, we utilize the Dice score among model pairs to estimate the correlation between the outputs of the two models forming each pair. To promote diversity, we select models with low Dice scores among each other. We carry out gastro-intestinal tract image segmentation experiments to compare our diversity-promoting ensemble (DiPE) with another strategy to create ensembles based on selecting the top scoring U-Net models. Our empirical results show that DiPE surpasses both individual models as well as the ensemble creation strategy based on selecting the top scoring models.