论文标题
部分可观测时空混沌系统的无模型预测
PcMSP: A Dataset for Scientific Action Graphs Extraction from Polycrystalline Materials Synthesis Procedure Text
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Scientific action graphs extraction from materials synthesis procedures is important for reproducible research, machine automation, and material prediction. But the lack of annotated data has hindered progress in this field. We demonstrate an effort to annotate Polycrystalline Materials Synthesis Procedures (PcMSP) from 305 open access scientific articles for the construction of synthesis action graphs. This is a new dataset for material science information extraction that simultaneously contains the synthesis sentences extracted from the experimental paragraphs, as well as the entity mentions and intra-sentence relations. A two-step human annotation and inter-annotator agreement study guarantee the high quality of the PcMSP corpus. We introduce four natural language processing tasks: sentence classification, named entity recognition, relation classification, and joint extraction of entities and relations. Comprehensive experiments validate the effectiveness of several state-of-the-art models for these challenges while leaving large space for improvement. We also perform the error analysis and point out some unique challenges that require further investigation. We will release our annotation scheme, the corpus, and codes to the research community to alleviate the scarcity of labeled data in this domain.