论文标题

部分可观测时空混沌系统的无模型预测

Deep-Circuit QAOA

论文作者

Koßmann, Gereon, Binkowski, Lennart, van Luijk, Lauritz, Ziegler, Timo, Schwonnek, René

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Despite its popularity, several empirical and theoretical studies suggest that the quantum approximate optimization algorithm (QAOA) has persistent issues in providing a substantial practical advantage. So far, those findings mostly account for a regime of few qubits and shallow circuits. We find clear evidence for a `no free lunch'-behavior of QAOA on a general optimization task with no further structure; individual cases have, however, to be analyzed more carefully. We propose and justify a performance indicator for the deep-circuit QAOA that can be accessed by solely evaluating statistical properties of the classical objective function. We further discuss the various favorable properties a generic QAOA instance has in the asymptotic regime of infinitely many gates, and elaborate on the immanent drawbacks of finite circuits. We provide several numerical examples of a deep-circuit QAOA method based on local search strategies and find that - in alignment with our performance indicator - some special function classes, like QUBO, admit a favorable optimization landscape.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源