论文标题

部分可观测时空混沌系统的无模型预测

Spectrum-BERT: Pre-training of Deep Bidirectional Transformers for Spectral Classification of Chinese Liquors

论文作者

Wang, Yansong, Sun, Yundong, Fu, Yansheng, Zhu, Dongjie, Tian, Zhaoshuo

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Spectral detection technology, as a non-invasive method for rapid detection of substances, combined with deep learning algorithms, has been widely used in food detection. However, in real scenarios, acquiring and labeling spectral data is an extremely labor-intensive task, which makes it impossible to provide enough high-quality data for training efficient supervised deep learning models. To better leverage limited samples, we apply pre-training & fine-tuning paradigm to the field of spectral detection for the first time and propose a pre-training method of deep bidirectional transformers for spectral classification of Chinese liquors, abbreviated as Spectrum-BERT. Specifically, first, to retain the model's sensitivity to the characteristic peak position and local information of the spectral curve, we innovatively partition the curve into multiple blocks and obtain the embeddings of different blocks, as the feature input for the next calculation. Second, in the pre-training stage, we elaborately design two pre-training tasks, Next Curve Prediction (NCP) and Masked Curve Model (MCM), so that the model can effectively utilize unlabeled samples to capture the potential knowledge of spectral data, breaking the restrictions of the insufficient labeled samples, and improving the applicability and performance of the model in practical scenarios. Finally, we conduct a large number of experiments on the real liquor spectral dataset. In the comparative experiments, the proposed Spectrum-BERT significantly outperforms the baselines in multiple metrics and this advantage is more significant on the imbalanced dataset. Moreover, in the parameter sensitivity experiment, we also analyze the model performance under different parameter settings, to provide a reference for subsequent research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源