论文标题
部分可观测时空混沌系统的无模型预测
A Design Space for Human Sensor and Actuator Focused In-Vehicle Interaction Based on a Systematic Literature Review
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Automotive user interfaces constantly change due to increasing automation, novel features, additional applications, and user demands. While in-vehicle interaction can utilize numerous promising modalities, no existing overview includes an extensive set of human sensors and actuators and interaction locations throughout the vehicle interior. We conducted a systematic literature review of 327 publications leading to a design space for in-vehicle interaction that outlines existing and lack of work regarding input and output modalities, locations, and multimodal interaction. To investigate user acceptance of possible modalities and locations inferred from existing work and gaps unveiled in our design space, we conducted an online study (N=48). The study revealed users' general acceptance of novel modalities (e.g., brain or thermal activity) and interaction with locations other than the front (e.g., seat or table). Our work helps practitioners evaluate key design decisions, exploit trends, and explore new areas in the domain of in-vehicle interaction.