论文标题
部分可观测时空混沌系统的无模型预测
Segre products and Segre morphisms in a class of Yang-Baxter algebras
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Let $(X,r_X)$ and $(Y,r_Y)$ be finite nondegenerate involutive set-theoretic solutions of the Yang-Baxter equation, and let $A_X = A(\textbf{k}, X, r_X)$ and $A_Y= A(\textbf{k}, Y, r_Y)$ be their quadratic Yang-Baxter algebras over a field $\textbf{k}.$ We find an explicit presentation of the Segre product $A_X\circ A_Y$ in terms of one-generators and quadratic relations. We introduce analogues of Segre maps in the class of Yang-Baxter algebras and find their images and their kernels. The results agree with their classical analogues in the commutative case.