论文标题
模棱两可
Equivariant cohomology and depth
论文作者
论文摘要
令$ n \ geq 1 $为一个整数,让$ v =(\ mathbb {z}/2 \ mathbb {z})^{n} $,让$ x $为$ v $ -cw-cw-complex。如果$ x $是有限的$ cw $ -complexe,则$ V $ -V $ -CW-COMPLEXE $ X $的同性恋模量,由$ h_ {v}^}^{*}(x,x,x,x,\ mthbb {f} _ {2})$ $ 2 $ 2 $ 2 $ 2 $ 2 $ 2由$ h^{*}(v,\ mathbb {f} _ {2})$表示。令$ dth_ {h^{*} v} h_ {v}^{*}(x,x,\ mathbb {f} _ {2})$是有限类型$ h^{*}(v,v,v,\ m mathb {f} _ {2} _ {2} _ {2} _ {2})$ - 模块$ - H_ _ _} \ Mathbb {f} _ {2})$相对于增强理想,$ \ widetilde {h^{*}}}(v,\ mathbb {f} _ {2} _ {2}) \ Medskip \\本文的目的是证明以下结果:\ Medskip \\ {\ bf theorem}:对于每个子组$ w $ $ v $的$ w $ of $ v $,我们都有:$ dth_ {h^{*} w} w} h_ {w} h_ {w} dth_ {h^{*} v} h_ {v}^{*}(x,x,\ mathbb {f} _ {2})$。
Let $n \geq 1$ be an integer, let $V=(\mathbb{Z}/2\mathbb{Z})^{n}$ and let $X$ be a $V$-CW-complex. If $X$ is a finite $CW$-complexe, the equivariant modulo $2$ cohomology of the $V$-CW-complexe $X$, denoted by $H_{V}^{*}(X, \mathbb{F}_{2})$, is a finite type module over the modulo $2$ cohomology of the group $V$, denoted by $H^{*}(V, \mathbb{F}_{2})$. Let $dth_{H^{*}V}H_{V}^{*}(X, \mathbb{F}_{2})$ be the depth of the finite type $H^{*}(V, \mathbb{F}_{2})$-module $H_{V}^{*}(X, \mathbb{F}_{2})$ relatively to the augmentation ideal, $\widetilde{H^{*}}(V, \mathbb{F}_{2})$, of $H^*(V, \mathbb{F}_{2})$. \medskip\\ The aim of this paper is to prove the following result: \medskip\\ {\bf Theorem}: For every subgroup $W$ of $V$, we have: $dth_{H^{*}W}H_{W}^{*}(X, \mathbb{F}_{2}) \leq dth_{H^{*}V} H_{V}^{*}(X, \mathbb{F}_{2}) $.