论文标题
在非铁武器模型中的绝热型近似
Adiabatic-impulse approximation in non-Hermitian Landau-Zener Model
论文作者
论文摘要
我们研究了非甲富式(LZ)模型中从PT对称到PT对称性破坏的过渡,反之亦然。能量通常很复杂,因此系统的松弛速率是由间隙的绝对值设置的。为了说明相变的动力学,引入了相对群体来计算非平衡相变的缺陷密度,而不是遗传系统中的激发。结果表明,绝热型(AI)近似是Hermitian系统中千禧一代(KIBBLE-ZUREK(Kz)机制的关键概念),可以推广到PT-对称的非甲米特LZ LZ模型,以研究关键点附近的动力学。因此,提出了最简单的非三级两级模型中的Kz机制。最后,还显示了针对非Hermitian LZ样问题的精确解决方案。
We investigate the transition from PT-symmetry to PT-symmetry breaking and vice versa in the non-Hermitian Landau-Zener (LZ) models. The energy is generally complex, so the relaxation rate of the system is set by the absolute value of the gap. To illustrate the dynamics of phase transitions, the relative population is introduced to calculate the defect density in nonequilibrium phase transitions instead of the excitations in the Hermitian systems. The result shows that the adiabatic-impulse (AI) approximation, which is the key concept of the Kibble-Zurek (KZ) mechanism in the Hermitian systems, can be generalized to the PT-symmetric non-Hermitian LZ models to study the dynamics in the vicinity of a critical point. Therefore, the KZ mechanism in the simplest non-Hermitian two-level models is presented. Finally, an exact solution to the non-Hermitian LZ-like problem is also shown.