论文标题

KAFE2-一种现代的物理实验室课程模型拟合工具

kafe2 -- a Modern Tool for Model Fitting in Physics Lab Courses

论文作者

Gäßler, Johannes, Quast, Günter, Savoiu, Daniel, Verstege, Cedric

论文摘要

将模型与测量数据拟合是自然科学中的标准任务之一,通常在实验室课程的背景下在物理教育的早期解决,其中统计方法在分析和解释实验结果中起着核心作用。对现代学校课程中这种方法的越来越重视,以及针对科学数据分析的强大免费和开源软件工具的可用性,为在大学级别上为这些方法开发新的教学概念构成了绝佳的前提。在本文中,我们介绍了KAFE2,这是在Karlsruhe技术学院的物理学院开发的一种新工具,该工具已在物理实验室课程中使用了几年。 {\ it kafe2}写在{\ it python}编程语言中,并广泛使用已建立的数值和优化库,为数值拟合模型函数拟合数据提供了简单但功能强大的接口。提供的工具允许对拟合过程的许多方面进行细粒度的控制,包括输入数据的规范和任意复杂的模型功能,复杂不确定性模型的构建以及模型参数所得置信区间的可视化。

Fitting models to measured data is one of the standard tasks in the natural sciences, typically addressed early on in physics education in the context of laboratory courses, in which statistical methods play a central role in analysing and interpreting experimental results. The increased emphasis placed on such methods in modern school curricula, together with the availability of powerful free and open-source software tools geared towards scientific data analysis, form an excellent premise for the development of new teaching concepts for these methods at the university level. In this article, we present kafe2, a new tool developed at the Faculty of Physics at the Karlsruhe Institute of Technology, which has been used in physics laboratory courses for several years. Written in the {\it Python} programming language and making extensive use of established numerical and optimization libraries, {\it kafe2} provides simple but powerful interfaces for numerically fitting model functions to data. The tools provided allow for fine-grained control over many aspects of the fitting procedure, including the specification of the input data and of arbitrarily complex model functions, the construction of complex uncertainty models, and the visualization of the resulting confidence intervals of the model parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源