论文标题

通过惩罚低相互信息,专门对多域NMT进行专门域NMT

Specializing Multi-domain NMT via Penalizing Low Mutual Information

论文作者

Lee, Jiyoung, Kim, Hantae, Cho, Hyunchang, Choi, Edward, Park, Cheonbok

论文摘要

多域神经机器翻译(NMT)训练具有多个域的单个模型。由于它在一个模型中处理多个领域的功效,因此它具有吸引力。理想的多域NMT应该同时学习独特的领域特征,但是,掌握域特殊性是一项非平凡的任务。在本文中,我们通过相互信息(MI)的角度研究了特定于域的信息,并提出了一个新的目标,该目标使低MI变得更高。我们的方法在当前竞争性的多域NMT模型中实现了最先进的性能。同样,我们从经验上表明,我们的目标促进了低MI,导致了域特有的多域NMT。

Multi-domain Neural Machine Translation (NMT) trains a single model with multiple domains. It is appealing because of its efficacy in handling multiple domains within one model. An ideal multi-domain NMT should learn distinctive domain characteristics simultaneously, however, grasping the domain peculiarity is a non-trivial task. In this paper, we investigate domain-specific information through the lens of mutual information (MI) and propose a new objective that penalizes low MI to become higher. Our method achieved the state-of-the-art performance among the current competitive multi-domain NMT models. Also, we empirically show our objective promotes low MI to be higher resulting in domain-specialized multi-domain NMT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源