论文标题
设计通用的因果深度学习模型:随机分析中无限二维动力学系统的情况
Designing Universal Causal Deep Learning Models: The Case of Infinite-Dimensional Dynamical Systems from Stochastic Analysis
论文作者
论文摘要
几个非线性运算符进行随机分析,例如与随机微分方程的溶液图,取决于时间结构,该时间结构不受当代神经操作员的利用,旨在近似于Banach空间之间的一般图。因此,本文通过引入一个深入学习模型设计框架,提出了对该开放问题的操作员学习解决方案,该框架采用了合适的无限维线性指标,例如Banach空间,作为输入并返回一个通用\ textit {sequention}深度学习模型,该模型适用于这些线性几何形状,专门用于编码时间结构的操作员的近似。我们称这些模型\ textit {因果神经操作员}。我们的主要结果指出,我们的框架产生的模型可以在紧凑的集合以及任意有限的时间范围内均匀地近似于Hölder或平滑的跟踪类操作员,这些轨迹类操作员在给定的线性度量空间之间绘制序列。我们的分析发现了因果神经操作员的潜在状态空间维度的新定量关系,这些关系甚至对(经典)有限维的复发性神经网络具有新的影响。此外,当近似有限维空间之间的动态系统时,我们对复发性神经网络的保证比从前馈神经网络继承的可用结果更紧密。
Several non-linear operators in stochastic analysis, such as solution maps to stochastic differential equations, depend on a temporal structure which is not leveraged by contemporary neural operators designed to approximate general maps between Banach space. This paper therefore proposes an operator learning solution to this open problem by introducing a deep learning model-design framework that takes suitable infinite-dimensional linear metric spaces, e.g. Banach spaces, as inputs and returns a universal \textit{sequential} deep learning model adapted to these linear geometries specialized for the approximation of operators encoding a temporal structure. We call these models \textit{Causal Neural Operators}. Our main result states that the models produced by our framework can uniformly approximate on compact sets and across arbitrarily finite-time horizons Hölder or smooth trace class operators, which causally map sequences between given linear metric spaces. Our analysis uncovers new quantitative relationships on the latent state-space dimension of Causal Neural Operators, which even have new implications for (classical) finite-dimensional Recurrent Neural Networks. In addition, our guarantees for recurrent neural networks are tighter than the available results inherited from feedforward neural networks when approximating dynamical systems between finite-dimensional spaces.