论文标题

瞬时courant代数和双符号群

Transitive Courant algebroids and double symplectic groupoids

论文作者

Álvarez, Daniel

论文摘要

在这项工作中,我们将Lu-Weinstein的双伴糖类固醇的构造扩展到任何谎言的双子型植物,以使其相关的Courant代数是及其及其atiyah algebroid的替代词。我们通过展示它如何概括出现在文献中出现的双重符号群体的许多例子来说明这一结果。作为这种结构的初步步骤,我们将精确的courant代数分类(简称为Ca-Groupoids)进行了分类,我们在扭曲的Ca-Groupoid的底部表明了通过扭曲的Courant代数的叶面。

In this work we extend the Lu-Weinstein construction of double symplectic groupoids to any Lie bialgebroid such that its associated Courant algebroid is transitive and its Atiyah algebroid integrable. We illustrate this result by showing how it generalises many of the examples of double symplectic groupoids that have appeared in the literature. As preliminary steps for this construction, we give a classification of exact twisted Courant algebroids over Lie groupoids (CA-groupoids for short) and we show the existence of a foliation by twisted Courant algebroids on the base of a twisted CA-groupoid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源