论文标题

具有远距离相互作用的孤子对的数值评估

Numerical Evaluation of a Soliton Pair with Long Range Interaction

论文作者

Wabnig, Joachim, Resch, Josef, Theuerkauf, Dominik, Anmasser, Fabian, Faber, Manfried

论文摘要

在拓扑颗粒(MTP)的模型中,我们确定了单极对,库仑场的源和水槽的相互作用能量。单孔由有限尺寸和质量的拓扑孤子表示,该田地没有任何分歧描述。我们在不同距离的数值计算中固定孤子中心。由于孤子的有限尺寸,我们会在几个孤子半径的距离内与库仑电势偏离。我们将这些偏差的数值结果与扰动QED中的耦合运行进行比较。

Within the model of topological particles (MTP) we determine the interaction energy of monopole pairs, sources and sinks of a Coulombic field. The monopoles are represented by topological solitons of finite size and mass, described by a field without any divergences. We fix the soliton centres in numerical calculations at varying distance. Due to the finite size of the solitons we get deviations from the Coulomb potential at distances of a few soliton radii. We compare the numerical results for these deviations with the running of the coupling in perturbative QED.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源