论文标题
$ u(1)$保存浮球随机电路的慢速热力化和尺寸
Slow thermalization and subdiffusion in $U(1)$ conserving Floquet random circuits
论文作者
论文摘要
随机量子电路是最小结构和可分析性混沌动力学的范式模型。我们研究了一个floquet统一电路家族,其中包括HAAR随机$ U(1)$收费保存动态;这种模型的最小模型具有作用于自旋1/2量子位的最接近的邻居门,并且单层的偶数/奇数门是定期重复的。我们发现,这种最小模型在数值可访问的系统尺寸上并不强大,并且长时间显示缓慢的副延伸动力学。我们在更广泛的电荷参数空间中绘制了热电学节约电路中的热力化动力学,并根据参数空间中的近着局部和可集成的制度了解慢速动力学的起源。相反,我们发现对最小模型的较小扩展足以实现强大的热化。其中包括(i)将相互作用范围增加到三个位点门(ii)通过将额外的无约束量子贴在每个位点上的保守电荷上,或使用较大的浮雕周期来增加局部希尔伯特空间维度,或者(iii)由两个独立的门组成。我们的结果应为未来的数值研究提供有关保存电荷电路的数值研究,这与广泛的主题理论问题有关。
Random quantum circuits are paradigmatic models of minimally structured and analytically tractable chaotic dynamics. We study a family of Floquet unitary circuits with Haar random $U(1)$ charge conserving dynamics; the minimal such model has nearest-neighbor gates acting on spin 1/2 qubits, and a single layer of even/odd gates repeated periodically in time. We find that this minimal model is not robustly thermalizing at numerically accessible system sizes, and displays slow subdiffusive dynamics for long times. We map out the thermalization dynamics in a broader parameter space of charge conserving circuits, and understand the origin of the slow dynamics in terms of proximate localized and integrable regimes in parameter space. In contrast, we find that small extensions to the minimal model are sufficient to achieve robust thermalization; these include (i) increasing the interaction range to three-site gates (ii) increasing the local Hilbert space dimension by appending an additional unconstrained qubit to the conserved charge on each site, or (iii) using a larger Floquet period comprised of two independent layers of gates. Our results should inform future numerical studies of charge conserving circuits which are relevant for a wide range of topical theoretical questions.