论文标题

XRICL:跨语性检索仪式的内在学习学习,用于跨语性文本到SQL语义解析

XRICL: Cross-lingual Retrieval-Augmented In-Context Learning for Cross-lingual Text-to-SQL Semantic Parsing

论文作者

Shi, Peng, Zhang, Rui, Bai, He, Lin, Jimmy

论文摘要

使用大型语言模型的文本学习最近显示了语义解析任务(例如文本到SQL翻译)的令人惊讶的结果。使用Question-SQL对示例提示GPT-3或法典可以产生出色的结果,与基于最新的基于FineTuning的模型相当。但是,现有工作主要集中在英语数据集上,尚不清楚大型语言模型是否可以作为其他语言的竞争语义解析器。为了弥合这一差距,我们的工作着重于跨语性文本到SQL语义解析,用于将非英语话语转化为基于英语模式的SQL查询。我们考虑一个零射击的转移学习设置,假设我们没有目标语言中的任何标记示例(但具有注释的示例英语)。这项工作介绍了XRICL框架,该框架学会了为给定的查询检索相关的英语示例以构建提示。我们还包括目标语言的全局翻译示例,以促进大型语言模型的翻译过程。为了系统地评估我们的模型,我们构建了两个新的基准数据集,即Xspider和Xkaggle-dbqa,其中包括中文,越南语,法尔西和印地语中的问题。我们的实验表明,XRICL有效利用大型预训练的语言模型以优于现有基线。数据和代码可在https://github.com/impavity/xricl上公开获取。

In-context learning using large language models has recently shown surprising results for semantic parsing tasks such as Text-to-SQL translation. Prompting GPT-3 or Codex using several examples of question-SQL pairs can produce excellent results, comparable to state-of-the-art finetuning-based models. However, existing work primarily focuses on English datasets, and it is unknown whether large language models can serve as competitive semantic parsers for other languages. To bridge this gap, our work focuses on cross-lingual Text-to-SQL semantic parsing for translating non-English utterances into SQL queries based on an English schema. We consider a zero-shot transfer learning setting with the assumption that we do not have any labeled examples in the target language (but have annotated examples in English). This work introduces the XRICL framework, which learns to retrieve relevant English exemplars for a given query to construct prompts. We also include global translation exemplars for a target language to facilitate the translation process for large language models. To systematically evaluate our model, we construct two new benchmark datasets, XSpider and XKaggle-dbqa, which include questions in Chinese, Vietnamese, Farsi, and Hindi. Our experiments show that XRICL effectively leverages large pre-trained language models to outperform existing baselines. Data and code are publicly available at https://github.com/Impavidity/XRICL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源