论文标题
参数有效的法律领域适应
Parameter-Efficient Legal Domain Adaptation
论文作者
论文摘要
寻求法律建议通常很昂贵。可以利用用于解决复杂问题的机器学习方面的最新进展,以帮助使法律服务更容易被公众访问。但是,现实生活中的应用遇到了重大挑战。最先进的语言模型的增长越来越大,使参数有效学习越来越重要。不幸的是,参数效率的方法在少量数据中的性能较差,这些数据在法律域中很常见(数据标记成本很高)。为了应对这些挑战,我们提出了参数有效的法律领域的适应,该领域使用公共法律论坛的大量无监督法律数据来进行法律预培训。该方法超过或匹配现有模型的几个肖像性能,例如在各种法律任务上进行的法律范围,同时仅调整大约0.1%的模型参数。此外,我们表明我们的方法可以实现与几个任务中现有方法相当的校准。据我们所知,这项工作是探索法律领域中调整语言模型的参数效率方法的最早作品之一。
Seeking legal advice is often expensive. Recent advancements in machine learning for solving complex problems can be leveraged to help make legal services more accessible to the public. However, real-life applications encounter significant challenges. State-of-the-art language models are growing increasingly large, making parameter-efficient learning increasingly important. Unfortunately, parameter-efficient methods perform poorly with small amounts of data, which are common in the legal domain (where data labelling costs are high). To address these challenges, we propose parameter-efficient legal domain adaptation, which uses vast unsupervised legal data from public legal forums to perform legal pre-training. This method exceeds or matches the fewshot performance of existing models such as LEGAL-BERT on various legal tasks while tuning only approximately 0.1% of model parameters. Additionally, we show that our method can achieve calibration comparable to existing methods across several tasks. To the best of our knowledge, this work is among the first to explore parameter-efficient methods of tuning language models in the legal domain.