论文标题
一种无偏见的测量两个数据集比率的方法
An unbiased method of measuring the ratio of two data sets
论文作者
论文摘要
在某些天文数据分析的情况下,提取的有意义的物理量是两个数据集之间的比率$ r $。示例包括透镜比,光谱红移样品中的闯入者速率,重力势的衰减速率和用于测试重力的$ e_g $。但是,仅将两个数据集的比率呈偏见,因为它在$ r $中呈现到$ r $的系统错误中的(甚至统计)错误。此外,在最小化$ r $的统计错误方面并不是最佳的。基于贝叶斯分析和数据中高斯误差的通常假设,我们得出了后pdf $ p(r)$的分析表达。此结果使快速,公正的$ r $测量结果具有最小的统计错误。此外,除了两个数据集之间的比例关系外,它不依赖于基本模型。甚至更一般而言,它适用于与基础物理/统计相关性关系的情况,而不是直接直接的两个数据集。它还适用于多个比率的情况($ r \ rightarrow {\ bf r} =(r_1,r_2,\ cdots)$)。我们以镜头比为例来证明我们的方法。我们将镜片作为DESI成像调查星系,并将其作为录音带宇宙剪切和\ emph {planck} CMB镜头。我们将分析限制为CMB镜头和宇宙剪切之间的比率。用于多个镜头剪切对的$ P(R)$几乎都是高斯。 $ r $ $ $范围从$ 4.9 $到$ 8.4 $。我们执行多个测试以验证上述结果的鲁棒性。
In certain cases of astronomical data analysis, the meaningful physical quantity to extract is the ratio $R$ between two data sets. Examples include the lensing ratio, the interloper rate in spectroscopic redshift samples, the decay rate of gravitational potential and $E_G$ to test gravity. However, simply taking the ratio of the two data sets is biased, since it renders (even statistical) errors in the denominator into systematic errors in $R$. Furthermore, it is not optimal in minimizing statistical errors of $R$. Based on Bayesian analysis and the usual assumption of Gaussian error in the data, we derive an analytical expression of the posterior PDF $P(R)$. This result enables fast and unbiased $R$ measurement, with minimal statistical errors. Furthermore, it relies on no underlying model other than the proportionality relation between the two data sets. Even more generally, it applies to the cases where the proportionality relation holds for the underlying physics/statistics instead of the two data sets directly. It also applies to the case of multiple ratios ($R\rightarrow {\bf R}=(R_1,R_2,\cdots)$). We take the lensing ratio as an example to demonstrate our method. We take lenses as DESI imaging survey galaxies, and sources as DECaLS cosmic shear and \emph{Planck} CMB lensing. We restrict the analysis to the ratio between CMB lensing and cosmic shear. The resulting $P(R)$, for multiple lens-shear pairs, are all nearly Gaussian. The S/N of measured $R$ ranges from $4.9$ to $8.4$. We perform several tests to verify the robustness of the above result.