论文标题

GLIF:用于尖峰神经网络的统一的门控泄漏的整合神经元

GLIF: A Unified Gated Leaky Integrate-and-Fire Neuron for Spiking Neural Networks

论文作者

Yao, Xingting, Li, Fanrong, Mo, Zitao, Cheng, Jian

论文摘要

数十年来,已经对尖峰神经网络(SNN)进行了研究,以纳入其生物学合理性并利用其有希望的能源效率。在整个现有的SNN中,通常采用了泄漏的集成和火力模型(LIF)模型来制定尖峰神经元并演变为具有不同生物学特征的众多变体。但是,大多数基于LIF的神经元仅支持不同神经元行为的单个生物学特征,从而限制了它们的表现力和神经元动态多样性。在本文中,我们建议统一的尖峰神经元GLIF融合不同神经元行为中不同的生物功能,从而扩大了尖峰神经元的表示空间。在GLIF中,在训练过程中可以学习,以确定融合生物功能的比例,被利用以确定融合生物功能的比例。结合所有可学习的与膜相关的参数,我们的方法可以使尖峰神经元不同且不断变化,从而增加了尖峰神经元的异质性和适应性。在各种数据集上进行的广泛实验表明,通过简单地将其神经元配方更改为GLIF,我们的方法与其他SNN相比获得了卓越的性能。特别是,我们用GLIF训练尖峰RESNET-19,并在CIFAR-100上获得了六个时间步骤,并获得了$ 77.35 \%$ $ TOP-1的准确性,这已经推进了最新的时间。代码可在\ url {https://github.com/ikarosy/gated-lif}中获得。

Spiking Neural Networks (SNNs) have been studied over decades to incorporate their biological plausibility and leverage their promising energy efficiency. Throughout existing SNNs, the leaky integrate-and-fire (LIF) model is commonly adopted to formulate the spiking neuron and evolves into numerous variants with different biological features. However, most LIF-based neurons support only single biological feature in different neuronal behaviors, limiting their expressiveness and neuronal dynamic diversity. In this paper, we propose GLIF, a unified spiking neuron, to fuse different bio-features in different neuronal behaviors, enlarging the representation space of spiking neurons. In GLIF, gating factors, which are exploited to determine the proportion of the fused bio-features, are learnable during training. Combining all learnable membrane-related parameters, our method can make spiking neurons different and constantly changing, thus increasing the heterogeneity and adaptivity of spiking neurons. Extensive experiments on a variety of datasets demonstrate that our method obtains superior performance compared with other SNNs by simply changing their neuronal formulations to GLIF. In particular, we train a spiking ResNet-19 with GLIF and achieve $77.35\%$ top-1 accuracy with six time steps on CIFAR-100, which has advanced the state-of-the-art. Codes are available at \url{https://github.com/Ikarosy/Gated-LIF}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源