论文标题

TabMixer:用小规模功能挖掘标签分布学习

TabMixer: Excavating Label Distribution Learning with Small-scale Features

论文作者

Cong, Weiyi, Zheng, Zhuoran, Jia, Xiuyi

论文摘要

标签分布学习(LDL)不同于多标签学习,旨在通过将单标签值转换为描述性度来代表实例的多义。不幸的是,标签分布数据集的特征空间受人为因素的影响以及特征提取器的感应偏置,从而导致特征空间中的不确定性。特别是,对于具有小尺度特征空间的数据集(特征空间尺寸$ \大约标签空间),现有的LDL算法表现不佳。为了解决这个问题,我们试图对功能空间的不确定性增加进行建模,以减轻LDL任务中的问题。具体而言,我们首先将样品的特征向量中的每个特征值扩大到向量(在高斯分布函数上进行采样)。这是通过使用子网络来学习高斯分布函数的方差参数,而平均参数则由此特征值填充。然后,将每个特征向量增强到一个矩阵中,该矩阵被以局部关注(\ textit {tabmixer})馈入混合器,以提取潜在特征。最后,挤压潜在特征以通过挤压网络产生准确的标签分布。广泛的实验证明,与几个基准上的其他LDL算法相比,我们提出的算法可能具有竞争力。

Label distribution learning (LDL) differs from multi-label learning which aims at representing the polysemy of instances by transforming single-label values into descriptive degrees. Unfortunately, the feature space of the label distribution dataset is affected by human factors and the inductive bias of the feature extractor causing uncertainty in the feature space. Especially, for datasets with small-scale feature spaces (the feature space dimension $\approx$ the label space), the existing LDL algorithms do not perform well. To address this issue, we seek to model the uncertainty augmentation of the feature space to alleviate the problem in LDL tasks. Specifically, we start with augmenting each feature value in the feature vector of a sample into a vector (sampling on a Gaussian distribution function). Which, the variance parameter of the Gaussian distribution function is learned by using a sub-network, and the mean parameter is filled by this feature value. Then, each feature vector is augmented to a matrix which is fed into a mixer with local attention (\textit{TabMixer}) to extract the latent feature. Finally, the latent feature is squeezed to yield an accurate label distribution via a squeezed network. Extensive experiments verify that our proposed algorithm can be competitive compared to other LDL algorithms on several benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源