论文标题

使用光谱图小波的协作多机器人映射的框架

A Framework for Collaborative Multi-Robot Mapping using Spectral Graph Wavelets

论文作者

Bernreiter, Lukas, Khattak, Shehryar, Ott, Lionel, Siegwart, Roland, Hutter, Marco, Cadena, Cesar

论文摘要

大规模未知环境的探索可以从部署多个机器人进行协作映射中受益。每个机器人都探索环境的一部分,并将船上姿势估算和地图通信到中央服务器以构建优化的全局多机器人地图。自然,由于车载轨道仪漂移,故障或变性,在机上和服务器估计之间可能会出现不一致之处。映射服务器可以使用计算昂贵的操作(例如机器人间循环闭合检测和多模式映射)来纠正并克服此类故障案例。但是,如果映射服务器没有提供反馈,则单个机器人不会从协作地图中受益。尽管从多机器人地图中的服务器更新可以从战略上大大减轻机器人任务,但由于其相关的计算和带宽相关的成本,大多数现有工作都缺乏它们。在这一挑战中,本文提出了一个新颖的协作映射框架,该框架可以使机器人和映射服务器之间的全局映射一致性。特别是,我们在不同的空间尺度上提出了图谱分析,以检测机器人和服务器图之间的结构差异,并为单个机器人姿势图生成必要的约束。我们的方法专门发现与漂移原点相对应的节点,而不是误差太大的节点。我们使用多个现实世界多机器人现场部署对我们提出的框架进行彻底分析和验证我们的框架,在这些框架中,我们显示了最高90 \%的机载系统的改进,并且可以从本地化失败甚至从其估计中恢复板上估计。

The exploration of large-scale unknown environments can benefit from the deployment of multiple robots for collaborative mapping. Each robot explores a section of the environment and communicates onboard pose estimates and maps to a central server to build an optimized global multi-robot map. Naturally, inconsistencies can arise between onboard and server estimates due to onboard odometry drift, failures, or degeneracies. The mapping server can correct and overcome such failure cases using computationally expensive operations such as inter-robot loop closure detection and multi-modal mapping. However, the individual robots do not benefit from the collaborative map if the mapping server provides no feedback. Although server updates from the multi-robot map can greatly alleviate the robotic mission strategically, most existing work lacks them, due to their associated computational and bandwidth-related costs. Motivated by this challenge, this paper proposes a novel collaborative mapping framework that enables global mapping consistency among robots and the mapping server. In particular, we propose graph spectral analysis, at different spatial scales, to detect structural differences between robot and server graphs, and to generate necessary constraints for the individual robot pose graphs. Our approach specifically finds the nodes that correspond to the drift's origin rather than the nodes where the error becomes too large. We thoroughly analyze and validate our proposed framework using several real-world multi-robot field deployments where we show improvements of the onboard system up to 90\% and can recover the onboard estimation from localization failures and even from the degeneracies within its estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源