论文标题

量子点旋转3纳秒内的量子点旋转的单发读数

Cavity-enhanced single-shot readout of a quantum dot spin within 3 nanoseconds

论文作者

Antoniadis, Nadia Olympia, Hogg, Mark Richard, Stehl, Willy Frederik, Javadi, Alisa, Tomm, Natasha, Schott, Rüdiger, Valentin, Sascha René, Wieck, Andreas Dirk, Ludwig, Arne, Warburton, Richard John

论文摘要

量子状态的快速,高保真的单拍读数是量子信息技术中无处不在的要求,在量子计算,量子误差校正和非局部性的基本测试中起着至关重要的作用。可以通过驱动旋转的光学转变并检测发射光子来实现光学发射器的自旋状态的读数。这种方法的速度和保真度通常受到低光子收集速率和测量反作用的组合的限制。在这里,我们演示了半导体量子点旋转状态的单发光学读数,仅达到了几个纳秒的读数时间。在我们的方法中,门控半导体量子点嵌入开放的微腔中。由微腔产生的purcell增强功能会增加一个自旋状态的光子创建速率,而不是从另一个旋转状态增加,并有效地将光子引导到定义明确的检测模式中。我们在3纳秒内获得了电子旋转状态的单发读数,其保真度为(95.2 $ \ pm $ 0.7)%,并使用重复的单发测量值观察量子跳跃。由于我们的读数速度,测量引起的背部进程引起的错误的影响很小。我们的工作将自旋读取时间降低到远低于半导体量子点中可实现的自旋松弛和脱去时间的时间,为它们用于量子技术的使用开辟了新的可能性。

Rapid, high-fidelity single-shot readout of quantum states is a ubiquitous requirement in quantum information technologies, playing a crucial role in quantum computation, quantum error correction, and fundamental tests of non-locality. Readout of the spin state of an optically active emitter can be achieved by driving a spin-preserving optical transition and detecting the emitted photons. The speed and fidelity of this approach is typically limited by a combination of low photon collection rates and measurement back-action. Here, we demonstrate single-shot optical readout of a semiconductor quantum dot spin state, achieving a readout time of only a few nanoseconds. In our approach, gated semiconductor quantum dots are embedded in an open microcavity. The Purcell enhancement generated by the microcavity increases the photon creation rate from one spin state but not from the other, as well as efficiently channelling the photons into a well-defined detection mode. We achieve single-shot readout of an electron spin state in 3 nanoseconds with a fidelity of (95.2$\pm$0.7)%, and observe quantum jumps using repeated single-shot measurements. Owing to the speed of our readout, errors resulting from measurement-induced back-action have minimal impact. Our work reduces the spin readout-time to values well below both the achievable spin relaxation and dephasing times in semiconductor quantum dots, opening up new possibilities for their use in quantum technologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源