论文标题
Seppll:将潜在类标签与弱监督噪声分开
SepLL: Separating Latent Class Labels from Weak Supervision Noise
论文作者
论文摘要
在弱监督的学习范式中,标记功能会自动将启发式(通常是嘈杂)标记为数据样本。在这项工作中,我们通过将与标签功能相关的两种类型的互补信息分开:与目标标签和仅针对一个标签功能特定的信息相关的信息,提供了一种从弱标签中学习的方法。所有标记的实例都将两种类型的信息反映在不同程度上。与旨在纠正或删除错误标记实例的以前的作品相反,我们学习了一个使用所有数据按原样进行的分支深层模型,但在潜在空间中将标签功能信息分开。具体而言,我们提出了端到端模型SEPLL,该模型通过引入潜在空间来扩展变压器分类器,以标记功能特定和特定于任务的信息。学习信号仅由标签函数匹配给出,我们的方法不需要预处理或标签模型。值得注意的是,任务预测是由没有任何直接任务信号的潜在层进行的。扳手文本分类任务上的实验表明,我们的模型与最先进的模型具有竞争力,并产生了新的最佳平均性能。
In the weakly supervised learning paradigm, labeling functions automatically assign heuristic, often noisy, labels to data samples. In this work, we provide a method for learning from weak labels by separating two types of complementary information associated with the labeling functions: information related to the target label and information specific to one labeling function only. Both types of information are reflected to different degrees by all labeled instances. In contrast to previous works that aimed at correcting or removing wrongly labeled instances, we learn a branched deep model that uses all data as-is, but splits the labeling function information in the latent space. Specifically, we propose the end-to-end model SepLL which extends a transformer classifier by introducing a latent space for labeling function specific and task-specific information. The learning signal is only given by the labeling functions matches, no pre-processing or label model is required for our method. Notably, the task prediction is made from the latent layer without any direct task signal. Experiments on Wrench text classification tasks show that our model is competitive with the state-of-the-art, and yields a new best average performance.