论文标题

蜂窝自动机:时间随机性和计算性

Cellular Automata: Temporal Stochasticity and Computability

论文作者

Paul, Subrata

论文摘要

在本文中,我们研究了细胞自动机的时间随机性和这种细胞自动机的行为。这项工作还探讨了这种细胞自动机的计算能力,该计算能力说明了解决亲和力分类问题的计算性。除此之外,在Cayley树上定义的蜂窝自动机还显示为经典的搜索问题解决者。拟议的时间随机蜂窝自动机涉及两个基本的蜂窝自动机规则,例如$ f $和$ g $。 $ f $是默认规则,但是,$ g $在整体系统上使用一些概率$τ$应用于系统中的噪声。在探索了时间随机细胞自动机(TSCA)的动力学之后,我们研究了这些时间随机细胞自动机(TSCA)的动力学行为,以识别从任何种子中收敛到固定点的TSCA。我们将每个收敛性TSCA应用于某些标准数据集,并观察每个TSCA作为模式分类器的有效性。据观察,与现有分类器算法相比,提出的基于TSCA的分类器显示出竞争性能。我们使用时间上随机细胞自动机在细胞自动机领域(称为亲和力分类问题)解决一个新问题,这是密度分类问题的概括。我们表明,该模型可用于多种应用程序,例如建模自我修复系统。最后,我们引入了围绕蜂窝自动机开发的新计算单元模型,以减少计算机中央处理单元(CPU)的工作量进行计算。计算单元的每个单元格充当带有附加内存的微小处理元件。这种CA在Cayley树上实施,以实现有效的解决方案,以解决各种计算问题。

In this dissertation, we study temporally stochasticity in cellular automata and the behavior of such cellular automata. The work also explores the computational ability of such cellular automaton that illustrates the computability of solving the affinity classification problem. In addition to that, a cellular automaton, defined over Cayley tree, is shown as the classical searching problem solver. The proposed temporally stochastic cellular automata deals with two elementary cellular automata rules, say $f$ and $g$. The $f$ is the default rule, however, $g$ is temporally applied to the overall system with some probability $τ$ which acts as a noise in the system. After exploring the dynamics of temporally stochastic cellular automata (TSCAs), we study the dynamical behavior of these temporally stochastic cellular automata (TSCAs) to identify the TSCAs that converge to a fixed point from any seed. We apply each of the convergent TSCAs to some standard datasets and observe the effectiveness of each TSCA as a pattern classifier. It is observed that the proposed TSCA-based classifier shows competitive performance in comparison with existing classifier algorithms. We use temporally stochastic cellular automata to solve a new problem in the field of cellular automata, named as, affinity classification problem which is a generalization of the density classification problem . We show that this model can be used in several applications, like modeling self-healing systems. Finally, we introduce a new model of computing unit developed around cellular automata to reduce the workload of the Central Processing Unit (CPU) of a machine to compute. Each cell of the computing unit acts as a tiny processing element with attached memory. Such a CA is implemented on the Cayley Tree to realize efficient solutions for diverse computational problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源