论文标题
一些统一的shimura品种的半稳定型号,超过刺激素数
Semi-stable models for some unitary Shimura varieties over ramified primes
论文作者
论文摘要
我们认为Shimura品种与一组签名$(2,N-2)$相关的品种。我们为这些品种提供了常规的$ p $ - addic积分模型,这些模型与奇数素数$ p $相比,这些模型在假想的二次领域中均在hermitian Space的自我晶格的稳定器中给出$ p $的级别子组。我们的构造是通过相应的本地模型的明确分辨率给出的。
We consider Shimura varieties associated to a unitary group of signature $(2,n-2)$. We give regular $p$-adic integral models for these varieties over odd primes $p$ which ramify in the imaginary quadratic field with level subgroup at $p$ given by the stabilizer of a selfdual lattice in the hermitian space. Our construction is given by an explicit resolution of a corresponding local model.