论文标题
重新分配:转换经验数据分布
Redistributor: Transforming Empirical Data Distributions
论文作者
论文摘要
我们提出了一种算法和软件包,重新分布式,该算法迫使标量样品的集合遵循所需的分布。当给出某些随机变量$ s $的独立且相同分布的样本以及某些所需的目标$ t $的连续累积分配功能时,它可以证明会产生一致的转换$ r $ $ r $的估计器,该$ r $满足$ r(s)= t分布的t $。由于$ s $或$ t $的分布可能未知,因此我们还提供了有效估算样品中这些分布的算法。这允许在图像处理中进行各种有趣的用例,其中重新分配是一种非常简单且易于使用的工具,能够产生视觉上吸引人的结果。对于颜色校正,它的表现优于其他基于模型的方法,并且在实现影像学风格转移方面表现出色,超过了内容保存中的深度学习方法。该软件包是在Python中实现的,并经过优化以有效处理大型数据集,因此它也适合于机器学习中的预处理步骤。源代码可在https://github.com/paloha/redistributor上获得。
We present an algorithm and package, Redistributor, which forces a collection of scalar samples to follow a desired distribution. When given independent and identically distributed samples of some random variable $S$ and the continuous cumulative distribution function of some desired target $T$, it provably produces a consistent estimator of the transformation $R$ which satisfies $R(S)=T$ in distribution. As the distribution of $S$ or $T$ may be unknown, we also include algorithms for efficiently estimating these distributions from samples. This allows for various interesting use cases in image processing, where Redistributor serves as a remarkably simple and easy-to-use tool that is capable of producing visually appealing results. For color correction it outperforms other model-based methods and excels in achieving photorealistic style transfer, surpassing deep learning methods in content preservation. The package is implemented in Python and is optimized to efficiently handle large datasets, making it also suitable as a preprocessing step in machine learning. The source code is available at https://github.com/paloha/redistributor.