论文标题

未经训练的神经网络的残留背影

Residual Back Projection With Untrained Neural Networks

论文作者

Shu, Ziyu, Entezari, Alireza

论文摘要

背景和目标:在许多图像处理任务中,神经网络的成功促使其在计算机断层扫描(CT)中的图像重建问题中的应用。尽管在这一领域取得了进展,但缺乏准确性的稳定性和理论保证,以及针对许多CT应用的特定成像领域的高质量培训数据的稀缺性。在本文中,我们提出了CT中迭代重建(IR)的框架,该框架利用了神经网络的层次结构,而无需培训。我们的框架将这些结构信息作为先验图像(DIP)的深度图像(RBP)连接构成了我们迭代的基础。 方法:我们建议将未经训练的U-NET与新颖的残留向后投影结合使用,以最大程度地减少目标函数并实现高智能重建。在每次迭代中,未经训练的U-NET的权重进行了优化,并且在当前迭代中使用U-NET的输出用于通过上述RBP连接在下一个迭代中更新U-NET的输入。 结果:实验结果表明,RBP-DIP框架比其他最先进的IR方法以及在多种条件下具有相似网络结构的预培训和未经训练的模型提供了改进。这些改进在少量视图,有限角度和低剂量成像配置中尤为重要。 结论:适用于平行和风扇梁X射线成像,我们的框架在多种条件下显示出显着改善。此外,提出的框架不需要训练数据,并且可以按需调整以适应不同的条件(例如噪声水平,几何和成像对象)。

Background and Objective: The success of neural networks in a number of image processing tasks has motivated their application in image reconstruction problems in computed tomography (CT). While progress has been made in this area, the lack of stability and theoretical guarantees for accuracy, together with the scarcity of high-quality training data for specific imaging domains pose challenges for many CT applications. In this paper, we present a framework for iterative reconstruction (IR) in CT that leverages the hierarchical structure of neural networks, without the need for training. Our framework incorporates this structural information as a deep image prior (DIP), and uses a novel residual back projection (RBP) connection that forms the basis for our iterations. Methods: We propose using an untrained U-net in conjunction with a novel residual back projection to minimize an objective function and achieve high-accuracy reconstruction. In each iteration, the weights of the untrained U-net are optimized, and the output of the U-net in the current iteration is used to update the input of the U-net in the next iteration through the aforementioned RBP connection. Results: Experimental results demonstrate that the RBP-DIP framework offers improvements over other state-of-the-art conventional IR methods, as well as pre-trained and untrained models with similar network structures under multiple conditions. These improvements are particularly significant in the few-view, limited-angle, and low-dose imaging configurations. Conclusions: Applying to both parallel and fan beam X-ray imaging, our framework shows significant improvement under multiple conditions. Furthermore, the proposed framework requires no training data and can be adjusted on-demand to adapt to different conditions (e.g. noise level, geometry, and imaged object).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源