论文标题

使用深层变压器和可解释的人工智能自动诊断心脏MRI模态性心肌疾病

Automatic Diagnosis of Myocarditis Disease in Cardiac MRI Modality using Deep Transformers and Explainable Artificial Intelligence

论文作者

Jafari, Mahboobeh, Shoeibi, Afshin, Ghassemi, Navid, Heras, Jonathan, Ling, Sai Ho, Beheshti, Amin, Zhang, Yu-Dong, Wang, Shui-Hua, Alizadehsani, Roohallah, Gorriz, Juan M., Acharya, U. Rajendra, Rokny, Hamid Alinejad

论文摘要

心肌炎是一种重要的心血管疾病(CVD),通过对心肌造成损害,对许多个体的健康构成威胁。包括艾滋病毒之类的微生物和病毒的发生在心肌炎(MCD)中起着至关重要的作用。在心脏磁共振成像(CMRI)扫描过程中产生的图像是低对比度的,这可能使诊断心血管疾病的挑战。另一方面,检查每个CVD患者的大量CMRI切片对于医生而言可能是一项具有挑战性的任务。为了克服现有的挑战,研究人员建议使用基于人工智能(AI)的计算机辅助诊断系统(CADS)。提出的论文概述了使用深度学习方法(DL)方法从CMR图像中检测MCD的CAD。所提出的CAD包括多个步骤,包括数据集,预处理,特征提取,分类和后处理。首先,为实验选择了Z-Alizadeh数据集。随后,CMR图像通过CutMix和Mixup Techniques进行了各种预处理步骤,包括DeNoing,调整大小以及数据增强(DA)。在下文中,最新的深度预训练和变压器模型用于CMR图像上的特征提取和分类。我们研究的发现表明,变压器模型在检测MCD而不是预训练的体系结构方面表现出卓越的性能。在DL架构方面,湍流神经变压器(TNT)模型表现出令人印象深刻的精度,使用10倍的交叉验证方法达到99.73%。此外,为了指出CMRI图像中MCD的怀疑区域,采用了可解释的GRAD CAM方法。

Myocarditis is a significant cardiovascular disease (CVD) that poses a threat to the health of many individuals by causing damage to the myocardium. The occurrence of microbes and viruses, including the likes of HIV, plays a crucial role in the development of myocarditis disease (MCD). The images produced during cardiac magnetic resonance imaging (CMRI) scans are low contrast, which can make it challenging to diagnose cardiovascular diseases. In other hand, checking numerous CMRI slices for each CVD patient can be a challenging task for medical doctors. To overcome the existing challenges, researchers have suggested the use of artificial intelligence (AI)-based computer-aided diagnosis systems (CADS). The presented paper outlines a CADS for the detection of MCD from CMR images, utilizing deep learning (DL) methods. The proposed CADS consists of several steps, including dataset, preprocessing, feature extraction, classification, and post-processing. First, the Z-Alizadeh dataset was selected for the experiments. Subsequently, the CMR images underwent various preprocessing steps, including denoising, resizing, as well as data augmentation (DA) via CutMix and MixUp techniques. In the following, the most current deep pre-trained and transformer models are used for feature extraction and classification on the CMR images. The findings of our study reveal that transformer models exhibit superior performance in detecting MCD as opposed to pre-trained architectures. In terms of DL architectures, the Turbulence Neural Transformer (TNT) model exhibited impressive accuracy, reaching 99.73% utilizing a 10-fold cross-validation approach. Additionally, to pinpoint areas of suspicion for MCD in CMRI images, the Explainable-based Grad Cam method was employed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源