论文标题

与某些决定因素有关的legendre符号

Legendre symbols related to certain determinants

论文作者

Luo, Xin-Qi, Sun, Zhi-Wei

论文摘要

令$ p $是一个奇怪的素数。对于$ b,c \ in \ mathbb z $,太阳引入了行列$$ d_p(b,c)= \ left |(i^2+bij+cj^2)^{p-2} \ right | _ {1 \ leqslant i,j \ leqslant i,j \ leqslant p-1},$ $和legendre符号$(\ frac {d_p(b,c)} p)$。最近,她和ni证明了$(\ frac {d_p(1,1)} p)=(\ frac {-2} p)$,如果$ p \ equiv2 \ pmod 3 $,这证实了先前的sunduenture of Sun。在本文中,我们确定$(\ frac {d_p(1,1)} p)$在情况下$ p \ equiv1 \ pmod3 $。太阳证明了$ d_p(2,2)\ equiv0 \ pmod p $如果$ p \ equiv3 \ pmod4 $,相反,我们证明$(\ frac {\ frac {d_p(2,2)} p)= 1 $ $ p \ equiv1 equiv1 equiv1 \ equiv1 \ equiv1 \ pmod8 $($ pmod8 $),以及$(\ frac $ freac if $ freac if freac if freac) $ p \ equiv5 \ pmod8 $。我们的工具包括通用的三项式系数和卢卡斯序列。

Let $p$ be an odd prime. For $b,c\in\mathbb Z$, Sun introduced the determinant $$D_p(b,c)=\left|(i^2+bij+cj^2)^{p-2}\right|_{1\leqslant i,j \leqslant p-1},$$ and investigated the Legendre symbol $(\frac{D_p(b,c)}p)$. Recently Wu, She and Ni proved that $(\frac{D_p(1,1)}p)=(\frac {-2}p)$ if $p\equiv2\pmod 3$, which confirms a previous conjecture of Sun. In this paper we determine $(\frac{D_p(1,1)}p)$ in the case $p\equiv1\pmod3$. Sun proved that $D_p(2,2)\equiv0\pmod p$ if $p\equiv3\pmod4$, in contrast we prove that $(\frac{D_p(2,2)}p)=1$ if $p\equiv1\pmod8$, and $(\frac{D_p(2,2)}p)=0$ if $p\equiv5\pmod8$. Our tools include generalized trinomial coefficients and Lucas sequences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源