论文标题

在四分之一的四倍的K-Moduli上

On K-moduli of quartic threefolds

论文作者

Abban, Hamid, Cheltsov, Ivan, Kasprzyk, Alexander, Liu, Yuchen, Petracci, Andrea

论文摘要

具有PICARD等级1的光滑Fano家族和反典型的卷4由四分之一的四维盖组成,沿着八粒表面分支的三维四二次分支。它们都可以被参数化,作为四边形的完整交叉点和加权的投影空间中的四分之一的交叉点,$ \ mathbb {p}(1,1,1,1,1,1,1,2)$,由$ x_ {2,4} \ subset \ subset \ subset \ mathbb {p}(p}(p}(1^5,5,5,5,2)$表示为所有这样平滑的完整交叉点都是k-stable。 With the aim of investigating the compactification of the moduli space of quartic 3-folds given by K-stability, we exhibit three phenomena: (i) there exist K-polystable complete intersection $X_{2,2,4} \subset \mathbb{P}(1^5,2^2)$ Fano 3-folds which deform to quartic 3-folds and are neither quartic 3-folds nor double二倍3倍的封面 - 换句话说,基因座的闭合参数化完整的交叉点$ x_ {2,4} \ subset \ subset \ mathbb {p}(1^5,5,2)$在k-moduli中包含的元素不含这种类型的元素; (ii)任何准平滑$ x_ {2,2,4} \ subset \ mathbb {p}(1^5,2^2)$ is k-polystable; (iii)k-moduli空间的闭合参数参数化完整交叉点$ x_ {2,2,4} \ subset \ subset \ mathbb {p}(1^5,2^2)$不是完整的交叉点$ $ x_ {2,2,4} \ subset \ mathbb {p}(1^5,2^2)$。

The family of smooth Fano 3-folds with Picard rank 1 and anticanonical volume 4 consists of quartic 3-folds and of double covers of the 3-dimensional quadric branched along an octic surface. They can all be parametrised as complete intersections of a quadric and a quartic in the weighted projective space $\mathbb{P}(1,1,1,1,1,2)$, denoted by $X_{2,4} \subset \mathbb{P}(1^5,2)$; all such smooth complete intersections are K-stable. With the aim of investigating the compactification of the moduli space of quartic 3-folds given by K-stability, we exhibit three phenomena: (i) there exist K-polystable complete intersection $X_{2,2,4} \subset \mathbb{P}(1^5,2^2)$ Fano 3-folds which deform to quartic 3-folds and are neither quartic 3-folds nor double covers of quadric 3-folds - in other words, the closure of the locus parametrising complete intersections $X_{2,4}\subset \mathbb{P}(1^5,2)$ in the K-moduli contains elements that are not of this type; (ii) any quasi-smooth $X_{2,2,4} \subset \mathbb{P}(1^5,2^2)$ is K-polystable; (iii) the closure in the K-moduli space of the locus parametrising complete intersections $X_{2,2,4} \subset \mathbb{P}(1^5,2^2)$ which are not complete intersections $X_{2,4} \subset \mathbb{P}(1^5,2)$ contains only points which correspond to complete intersections $X_{2,2,4} \subset \mathbb{P}(1^5,2^2)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源