论文标题

训练深Helmholtz机器的多层次数据表示

Multi-level Data Representation For Training Deep Helmholtz Machines

论文作者

Ramos, Jose Miguel, Sa-Couto, Luis, Wichert, Andreas

论文摘要

当前机器学习领域的绝大多数研究都是使用具有强烈论证的算法来完成的,这些算法表明了它们的生物学不稳定性,例如反向传播,从而偏离了该领域的重点,从理解其原始有机灵感到强迫性寻求最佳性能。然而,有一些提出的模型尊重人脑中存在的大多数生物学约束,并且是模仿其某些特性和机制的有效候选者。在本文中,我们将专注于指导学习具有基于人类图像感知机制的启发式启发式的生物学上合理的生成模型,称为Helmholtz机器在复杂的搜索空间中。我们假设该模型的学习算法由于其像HEBBIAN一样的本地更新规则,因此不适合深网,这使其无法充分利用多层网络提供的组成属性。我们建议通过使用多级数据表示,在不同的分辨率下为网络的隐藏层提供视觉队列来克服这个问题。几个图像数据集上的结果表明,该模型不仅能够获得更好的总体质量,而且能够在生成的图像中获得更广泛的多样性,从而证实了我们的直觉,即使用我们提出的启发式启发式,该模型使该模型可以更优势地利用网络的深度增长。更重要的是,它们显示了以大脑启发的模型和技术为基础的未开发的可能性。

A vast majority of the current research in the field of Machine Learning is done using algorithms with strong arguments pointing to their biological implausibility such as Backpropagation, deviating the field's focus from understanding its original organic inspiration to a compulsive search for optimal performance. Yet, there have been a few proposed models that respect most of the biological constraints present in the human brain and are valid candidates for mimicking some of its properties and mechanisms. In this paper, we will focus on guiding the learning of a biologically plausible generative model called the Helmholtz Machine in complex search spaces using a heuristic based on the Human Image Perception mechanism. We hypothesize that this model's learning algorithm is not fit for Deep Networks due to its Hebbian-like local update rule, rendering it incapable of taking full advantage of the compositional properties that multi-layer networks provide. We propose to overcome this problem, by providing the network's hidden layers with visual queues at different resolutions using a Multi-level Data representation. The results on several image datasets showed the model was able to not only obtain better overall quality but also a wider diversity in the generated images, corroborating our intuition that using our proposed heuristic allows the model to take more advantage of the network's depth growth. More importantly, they show the unexplored possibilities underlying brain-inspired models and techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源