论文标题

多观看点和多重评估,带有Felicos的电感偏置提升机抽象推理能力

Multi-Viewpoint and Multi-Evaluation with Felicitous Inductive Bias Boost Machine Abstract Reasoning Ability

论文作者

Wei, Qinglai, Chen, Diancheng, Yuan, Beiming

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Great endeavors have been made to study AI's ability in abstract reasoning, along with which different versions of RAVEN's progressive matrices (RPM) are proposed as benchmarks. Previous works give inkling that without sophisticated design or extra meta-data containing semantic information, neural networks may still be indecisive in making decisions regarding RPM problems, after relentless training. Evidenced by thorough experiments and ablation studies, we showcase that end-to-end neural networks embodied with felicitous inductive bias, intentionally design or serendipitously match, can solve RPM problems elegantly, without the augment of any extra meta-data or preferences of any specific backbone. Our work also reveals that multi-viewpoint with multi-evaluation is a key learning strategy for successful reasoning. Finally, potential explanations for the failure of connectionist models in generalization are provided. We hope that these results will serve as inspections of AI's ability beyond perception and toward abstract reasoning. Source code can be found in https://github.com/QinglaiWeiCASIA/RavenSolver.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源