论文标题
在接近图上限制了近似相似性搜索
Constrained Approximate Similarity Search on Proximity Graph
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Search engines and recommendation systems are built to efficiently display relevant information from those massive amounts of candidates. Typically a three-stage mechanism is employed in those systems: (i) a small collection of items are first retrieved by (e.g.,) approximate near neighbor search algorithms; (ii) then a collection of constraints are applied on the retrieved items; (iii) a fine-grained ranking neural network is employed to determine the final recommendation. We observe a major defect of the original three-stage pipeline: Although we only target to retrieve $k$ vectors in the final recommendation, we have to preset a sufficiently large $s$ ($s > k$) for each query, and ``hope'' the number of survived vectors after the filtering is not smaller than $k$. That is, at least $k$ vectors in the $s$ similar candidates satisfy the query constraints. In this paper, we investigate this constrained similarity search problem and attempt to merge the similarity search stage and the filtering stage into one single search operation. We introduce AIRSHIP, a system that integrates a user-defined function filtering into the similarity search framework. The proposed system does not need to build extra indices nor require prior knowledge of the query constraints. We propose three optimization strategies: (1) starting point selection, (2) multi-direction search, and (3) biased priority queue selection. Experimental evaluations on both synthetic and real data confirm the effectiveness of the proposed AIRSHIP algorithm. We focus on constrained graph-based approximate near neighbor (ANN) search in this study, in part because graph-based ANN is known to achieve excellent performance. We believe it is also possible to develop constrained hashing-based ANN or constrained quantization-based ANN.