论文标题
内镜成像的多尺度结构感知暴露校正
Multi-Scale Structural-aware Exposure Correction for Endoscopic Imaging
论文作者
论文摘要
内窥镜检查是用于诊断空心器官癌变的最广泛使用的成像技术。但是,内窥镜图像通常会受到照明伪影的影响:根据光源姿势和组织方向,图像部分可能过度或不充满渗透。这些文物对计算机视觉或基于AI的诊断工具的性能有很大的负面影响。尽管非常需要内窥镜图像增强方法,但很少努力实时地进行过度和透露欠佳的增强。该贡献介绍了LMSPEC的目标函数的扩展,LMSPEC的目标函数最初引入了一种旨在增强自然场景的图像。它在这里用于内窥镜成像和结构信息保存的暴露校正。据我们所知,这种贡献是第一个使用深度学习方法(DL)方法来提高内窥镜图像的第一个贡献。在Endo4ie数据集上进行了测试,拟议的实现对LMSPEC产生了显着改善,分别对过度和未渗透的图像的SSIM增加了4.40%和4.21%。
Endoscopy is the most widely used imaging technique for the diagnosis of cancerous lesions in hollow organs. However, endoscopic images are often affected by illumination artefacts: image parts may be over- or underexposed according to the light source pose and the tissue orientation. These artifacts have a strong negative impact on the performance of computer vision or AI-based diagnosis tools. Although endoscopic image enhancement methods are greatly required, little effort has been devoted to over- and under-exposition enhancement in real-time. This contribution presents an extension to the objective function of LMSPEC, a method originally introduced to enhance images from natural scenes. It is used here for the exposure correction in endoscopic imaging and the preservation of structural information. To the best of our knowledge, this contribution is the first one that addresses the enhancement of endoscopic images using deep learning (DL) methods. Tested on the Endo4IE dataset, the proposed implementation has yielded a significant improvement over LMSPEC reaching a SSIM increase of 4.40% and 4.21% for over- and underexposed images, respectively.