论文标题

两相热导体中的对称定理

A symmetry theorem in two-phase heat conductors

论文作者

Kang, Hyeonbae, Sakaguchi, Shigeru

论文摘要

我们考虑了整个欧几里得空间中热扩散方程的库奇问题,该空间由两个具有不同恒定电导率的媒体组成,最初一种介质具有温度0,另一种介质具有温度1。在假设一个介质的假设下,一个介质是有界的,并且界面是$ c^{2,α} $的类别,如果界面是界面是站点的,那么它必须是一个sphere,它是一个sphere的,它是一个sphere的一个sphere。由于锯齿蛋白引起的移动平面的方法被直接用于证明结果。

We consider the Cauchy problem for the heat diffusion equation in the whole Euclidean space consisting of two media with different constant conductivities, where initially one medium has temperature 0 and the other has temperature 1. Under the assumptions that one medium is bounded and the interface is of class $C^{2,α}$, we show that if the interface is stationary isothermic, then it must be a sphere. The method of moving planes due to Serrin is directly utilized to prove the result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源