论文标题

部分可观测时空混沌系统的无模型预测

Partially Oblivious Neural Network Inference

论文作者

Rizomiliotis, Panagiotis, Diou, Christos, Triakosia, Aikaterini, Kyrannas, Ilias, Tserpes, Konstantinos

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Oblivious inference is the task of outsourcing a ML model, like neural-networks, without disclosing critical and sensitive information, like the model's parameters. One of the most prominent solutions for secure oblivious inference is based on a powerful cryptographic tools, like Homomorphic Encryption (HE) and/or multi-party computation (MPC). Even though the implementation of oblivious inference systems schemes has impressively improved the last decade, there are still significant limitations on the ML models that they can practically implement. Especially when both the ML model and the input data's confidentiality must be protected. In this paper, we introduce the notion of partially oblivious inference. We empirically show that for neural network models, like CNNs, some information leakage can be acceptable. We therefore propose a novel trade-off between security and efficiency. In our research, we investigate the impact on security and inference runtime performance from the CNN model's weights partial leakage. We experimentally demonstrate that in a CIFAR-10 network we can leak up to $80\%$ of the model's weights with practically no security impact, while the necessary HE-mutliplications are performed four times faster.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源